成果发表 | 研究院高光远副教授团队在Insurance :Mathematics and Economics发表论文

发布时间:2025-04-17浏览量:


中国人民大学健康大数据研究院高光远副教授团队研究成果“Insurance loss modeling with gradient tree-boosted mixture models”在 Insurance :Mathematics and Economics 接收发表。

在精算实践中,有限混合模型是一种广泛应用的统计方法,用于拟合保险损失。尽管期望最大化(EM)算法通常是混合模型参数估计的重要工具,但它存在一些问题,如难以进行特征工程和变量选择,以及容易发生过拟合。为了解决这些问题,我们提出了一种期望增强(EB)算法,该算法在第二步中通过梯度提升决策树,自适应地增加似然函数值。EB算法能够非参数化地、对过拟合敏感地,估计混合概率和成分分布参数,并同时执行自动化特征工程、模型拟合和变量选择,从而充分挖掘特征空间的预测能力。此外,所提出的算法可以与并行计算方法结合,以提高计算效率。最后,两项模拟研究和一项索赔金额的实证研究展示了该算法的良好性能。

image.png