成果发表|研究院李伟副教授团队在Statistics in Medicine发表论文

发布时间:2025-03-31浏览量:

中国人民大学健康大数据研究院黄辉教授团队研究成果Identification and estimation of causal effects in the presence of confounded principal strata”在Statistics in Medicine接收发表。

作为因果推断的重要工具,主分层分析近年来得到广泛应用,特别是在不依从问题和死亡截断问题中。在这些研究中,主分层由中间变量的联合潜在结果值确定,通常关注的是每个主分层内的因果效应,即主分层因果效应。传统基于观测数据识别主分层因果效应的研究需要依赖于处理分配的可忽略性假设,该假设本质上要求研究人员准确地测量尽可能多的协变量,以涵盖所有潜在的混杂因素。这在实践中可能由于成本和技术限制等原因而难以实现。针对这一问题,本文在处理和主分层之间存在未观测混杂因素的情况下,提出一种对主分层因果效应进行识别与估计的方法。该方法主要通过借助一对阴性对照变量来减少未观测混杂的影响,从而实现主分层因果效应的非参数识别。模拟结果表明该方法在估计的偏差、标准误和覆盖率上表现良好。此外,本文将所提出的方法应用于白血病研究的真实数据集中,用于评估两种不同的移植方案对于存活组白血病患者复发时间的影响。

image.png