Graphical Principal Component Analysis of Multivariate Functional Time Series

发布时间:2024-04-26浏览量:

多元函数型时间序列数据在大气科学、环境健康、空间流行病等领域是一种常见的数据类型。这类函数型数据在多元和时序层面存在双重相依性,其协方差结构同时受到多元、时序以及随机曲线自身维度上变异性的共同影响,其复杂的相依结构降低了传统函数型主成分分析的统计推断效率与可解释性。针对这一问题,黄辉教授及其合作者引入图模型刻画数据的多元结构,并基于傅立叶变换提出一类定义在频率域上的动态弱可分条件,用于捕捉多元函数型时间序列的双重相依性。在此条件下,研究者可将图结信息内嵌于函数型主成分分析当中,提高函数特征提取和信号重构的效率。论文从大样本理论以及数值模拟的层面论证了新方法的有效性,并将该方法应用于京津冀地区PM2.5空气质量的监测网络数据分析当中。除此以外,该方法可以广泛应用于人群的多污染物暴露计算、医学图谱多元信号提取、疾病地图绘制等方面的研究当中。